If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2=250
We move all terms to the left:
7x^2-(250)=0
a = 7; b = 0; c = -250;
Δ = b2-4ac
Δ = 02-4·7·(-250)
Δ = 7000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7000}=\sqrt{100*70}=\sqrt{100}*\sqrt{70}=10\sqrt{70}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{70}}{2*7}=\frac{0-10\sqrt{70}}{14} =-\frac{10\sqrt{70}}{14} =-\frac{5\sqrt{70}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{70}}{2*7}=\frac{0+10\sqrt{70}}{14} =\frac{10\sqrt{70}}{14} =\frac{5\sqrt{70}}{7} $
| 6+8×2a=80 | | ⅔(6x-9)=-34* | | 4d-4=40 | | 3x+12°=2x+60° | | 67+39+1+x=180 | | 7+8x=2x-5 | | 114+x+(2x)=180 | | X+x+x+7=67 | | 3^{(-2x)}=243 | | 3^(-2x)=243 | | 34-h=17 | | Y=650+60x | | 3x/20=4/18 | | -5/7x3=x | | 23+(x-24)+x=180 | | (4x/5)-x=(x/5)-(20/3) | | 18/x=60 | | 8a÷2a=0 | | -6x-5=5-6x | | (20y-11)+(4y+6)+7y-7)=360 | | 2x+11+20=3x+7 | | “13.8”=“2.7x”-“7.8” | | −3/1(5/6−9b)+b=2b−(b+1) | | −31 (56 −9b)+b=2b−(b+1) | | X3+36x-8=0 | | 6/7/12/21=4x | | 4(3x−1)+7=2x+6+9x | | 4(3 | | 6890/530000=x/330000 | | 3|6x+21|−18=33 | | 3×-4=5y-2 | | -2m-6+4m=-5+2m-1 |